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Abstract

One of basic concepts of the well-known simplex optimization method is that from the current simplex set of points
(solutions) a new point — reflection is constructed. The reflection point is used for a conditional updating of the simplex set.
This simple and efficient idea is applied in the simulated annealing to suggest a new version of this stochastic optimization
method. As a forerunner of the presented sirnulated annealing is the controlled random search invented by Price in the mid-
dle of seventies. He proposed the very important idea that a population of points is considered and from this population the
simplex set is randomly selected. Reflection points update the population so that they conditionally substitute points with
highest values of objective function. The simplex simulated annealing enhances further stronger stochastic and evolution
character of this method. The construction of reflection points is randomized and their returning to the population is solved
by the Metropolis criterion. A parallel versicn of simplex simulated annealing uses a decomposition of the whole population
into disjoint subpopulations for which indepzndent simulated annealings are done. The subpopulations randomly interact so
that between two subpopulations their best points are exchanged and worst ones are eliminated. © 1997 Elsevier Science
B.V.
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1. Introduction

The standard simplex method [1,2] belongs to the well-known nongradient optimization techniques often used
in chemistry. Its generalization towards its randomization was done by Price [3] (cf. also Ref. [4]). His so-called
control random search (CRS) method is able to look for, to some limited extent, global minima, and may be
now considered as one of forerunners of modern stochastic optimization techniques (genetic algorithms [5], sim-
ulated annealing [6], evolution strategy [7], etc.). The applications of optimization algorithms in chemistry can
be found, e.g., in Refs. [8—13]. The purpose of this communication is to give a brief outline of our recent efforts
to elaborate a hybrid of the simplex method and the simulated annealing, which would be more effective and
robust than their single predecessors. The proposed hybrid represents a simple approach to evolutionary opti-
mization methods with substantially increased effectiveness and robustness in comparison with its single con-
stituents alone.
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2. Theory

Let us consider an objective function

f:DCR" >R, (1)
where D = II[a;, b} is a domain of f. If x=(x|, x,, ..., x,) €D, then Vi: a, < x, < b,. The following opti-
mization problem is considered

Kop, = arg min f(x). (2)

Its solution x,, € D corresponds to the so-called optimal point for which the objective function f over the do-
main D has the minimal values, Vx € D: f(x) = f(x,,). If a point x € R" is outside the domain D, then a
repair process returns this point to the domain D. Loosely speaking, this process is a ‘mirroring’ of entries X;
by the bounds «; and b,

x;<a; = x;«2a,-x, (3a)
x;>b, = x;<2b -x, (3b)
for i=1,2, ..., n. These elementary mirroring steps of the repair process are repeated until all entries x, be-

long to closed intervals [a;, b,].
2.1. Basic principles of simplex method [1,2]

A simplex set S is composed of n + 1 points from the domain D

S={xp x5, ..., x4} CD. (4)
Its three points are especially distinguished

xy = arg max f( x), (5a)
x€S

x, = arg min f( x), (5b)
xS

_ 1

x=—(2x—xn)- (5¢)

B yes

At point xy (x;) the objective function f has highest (lowest) functional value on the simplex S, and x corre-
sponds to the center of gravity of simplex points but the point xy. A reflection (see Fig. 1) of x,, with respect
to the center of gravity x is

T =xy+2(x—xy) =2x—xy. (6)
The reflection point x* is used for the updating of simplex §
f(x7) <f(xy)=xy<x". (7

In the opposite case, f(x*) > f(xy), the so-called simplex reduction (see Fig. 1) is done, where simplex points
are updated by

x5 (x4 x ). (®)

The simplex method is stopped if the current simplex is sufficiently small, e.g., the L, distance between x4 and
x; is smaller than a prescribed precision & (small positive number)

|xg —x | <e. (9)

An algorithmic implementarion of simplex method is very simple and its pseudocode is outlined in algorithm 1.
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Reflection Reduction

Fig. 1. Schematic outline of reflection and reduction operations. Encircled dots correspond to reflection points x* constructed by the ‘re-
flection’ operation of x,; point through the center of gravity x. If the functional value f(x*) is smaller than f(xy), then the current simplex
is ‘reduced’ so that the center of reduction is the point x .

Algorithm 1. Implementation of simplex method. The algorithm is initialized by a random generation of n + 1
simplex points from the domain D. For the current simplex S a reflection point x* is constructed by a proce-
dure reflection (S) (see Eq. (6)). We assume that this procedure contains also a repair process (see Egs.
(3a) and (3b)) applied if the reflection x* is outside the domain D, the repair process returns the reflection x*
inside the domain D. The simplex methods is stopped if the L, distance between points x,; and x (that corre-
spond to simplex points evaluated by the highest and lowest value, respectively, of the objective function) is
smaller than a small positive number &. The updating of the current simplex S is done so that if x* provides
better solution than x, (i.e. f(x™) <f(xy)), then the point xy is eliminated from the simplex S by the reflec-
tion x*; in the opposite case (i.e., f(x*) = f(xy)) a reduction of S is done, this is realized by the procedure
reduction (8), see Eq. (8).

Procedure Simplex;
begin S:=set of (n+l) randomly generated points of D;
while |xy—-x;|>e do
begin x':=reflection(S);
if f(x")<f(xy) then xy:=x else reduction(S);
end;
end;

2.2. Controlled random search (CRS)

The method of controlled random search, introduced by Price [3], is a generalization of simplex algorithm
and may be considered as an ‘archetype’ of modern evolution algorithms.
Let P be a population of p randomly selected points from D (p > n)

P={x,, x5, ..., x,}. (10)
The simplex subset S is composed of (n + 1) points that are randomly selected from the population P
S={xp> Xqs -+0» Xo  } CP. (11)

For the given simplex S a reflection pecint x * is constructed in the same way as in the standard simplex method,
see Eq. (6), but now the point xy is randomly selected and not determined as the simplex point with highest
value of objective function. The reflection point x* is used for an updating of the population P, the point

X = arg max f( x) (12)
x€P
is competitively changed by the reflection x* (see Fig. 2)
F(x7) <F(Xpax) = Xpax < X7 (13)
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Step 1 Step 2

Fig. 2. Outline of the first three steps :n CRS method. In step 1 a simplex is randomly generated, its reflection x* (encircled dot) eliminates
the point x,,,. Formally the same procedure is applied in the next steps of CRS method. Since the ‘marginal’ points x,,, are conditionally
removed from the population, all points are in turn ‘compressed’ to a close neighbourhood of the potential final solution.

(while in the simplex method the point x is substituted by the reflection). In the opposite case, flx")>
(X1 )s the population remains unchanged. The way of updating (see Eq. (13)) of the population P corre-
sponds to the most principal deviation from the simplex method. Since the points x,  are successively re-
moved in each step of CRS algorithm, the ‘diameter’ of population P is monotonously decreasing. At the final
stage of the algorithm all poirts of P are situated in a close neighbourhood of the resulting ‘optimal” solution.
This means that the process of simplex reduction (see Eq. (8)) may be omitted in the present algorithm. A ‘con-
centration’ of points of P is now caused by the way of updating (see Eq. (13)), where ‘marginal’ points x,,,
are substituted by reflection points x * (see Fig. 3). The algorithm is finished, e.g., if L, distance between points
corresponding to the maximal and minimal functional values from the whole population is smaller than a pre-
scribed precision, | x,,, — x| < &. A pseudocode of CRS is outlined in algorithm 2.

Algorithm 2. Implementation of controlled random search (CRS) method. The algorithm is initialized by a ran-
dom generation of p (p > n) points of the population P. Simplex points from the subset S (composed of n + 1
points) are randomly selected from the current population P. The reflection point x ™, created from simplex points

Final stage of CRS

&1

Fig. 3. “‘Compression’ of population points in CRS method, discussed in Fig. 2. A diameter of population P is decreasing successively as
number of iterative steps increases. The method is stopped if the diameter of P is smaller than a prescribed small positive number & (preci-
sion).

Initial stage of CRS
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of S, is returned to the population P if its functional value of f is smaller than the maximal functional value of
Al

the population P (represented by x>, if so, then x* eliminates the point x,,,,. The method is stopped if L,
distance between points x,, and x_; is smaller than a prescribed &.

procedure CRS;
begin P:=set of » randomly generated points of D;
while |Xpax~Xninl>€ do
begin S:=s=2t of n+l randomly selected points of P;
x"i1=reflection(S);
if F£(X")<f (Xmax) then Xg..:=x';
end;
end;

2.3. Simplex simulated annealing (SSA)

CRS method is modified to be more competitive and stochastic. The following two modifications are intro-
duced. First, the construction of reflection point x* is randomized (cf. Ref. [4], see Fig. 4)

x =xy+r(ag, o)(x—xy), (14)
where r(a,, o) is a random (e.g. Gaussian) number with a mean «, and a ‘standard deviation’ o, in all our
illustrative calculations we used a, =2 and o = 0.5. Second, the updating of population P is modified so that
instead of the point x,,,, the simplex point xy; is considered, introduction of the new point x* to the popula-
tion P is solved by the Metropolis criterion [7] with probability
Ff(x*)—f(x
) =70l (15)

where T is a ‘temperature’ playing a role of basic simulated annealing parameter. If T tends to zero, then the
acceptance probability Pr of reflection point x* with higher functional value than f(xy) G.e., f(x*) > f(xy)
is vanishing. Simple pseudocode of SSA is outlined in algorithm 3.

Pr=min{1,exp(— T

Algorithm 3. Implementation of simplex simulated annealing method. Algorithm is initialized by a random gen-
eration of p points of the domain D, these points create an initial population P. The initial (maximal) tempera-
ture 7 is set equal to T, . Outer cycle is repeated while 7> T, , where the temperature is subsequently multi-
plicatively decreased by T: = o * T. The inner cycle is repeated by k_,, times, where k., is sufficiently great
number (usually from 10> to 10°). Real variable random corresponds to a uniform random number generator

from the semiopen interval [0,1).

Fig. 4. An outline of stochastic reflection process determined by Eq. (14). The unimodal function above dotted reflection line represents a
distribution of random number generator with a mean o, = 2 and with width determined by the ‘deviation’ o.



166 V. Kvasnitka, J. Pospichal / Chemometrics and Intelligent Laboratory Systems 39 (1997) 161173

procedure SSA;
begin P:=set of p randomly selected points of D;
T :=Thax?
while T>T,;, do
begin for k:=1 to ku.x do
begin S:=set of n+l randomly
selected points of P;
x':=reflection(s);
Pr:=min (1, exp (- (£(x") £ (xu))/T));
if random<Pr then x;:=x";
end;
T:i=a*T;
end;
end;

2.4. Parallel simplex simulated annealing (PSSA)

In order to introduce a parallelization of SSA the population P should be divided onto r disjoint subpopula-
tions composed of p points from D (i.e., the whole population P is composed of |P|=r X p points)

P=|J P (ifi#j,then P,NP,=(). (16)
i=1

The method of SSA is applied independently for these subpopulations. The simulated annealing is synchronized
for all subpopulations so that all have the same temperature T, which is simultaneously decreased for all of them,
see Fig. 5. An interaction between subpopulations is realized by a random selection (with very low level of
probability, e.g., P, ., =1077) of two subpopulations and then copies of best solutions (points) are mutually
exchanged, and simultaneously worst ones are eliminated. Let 7 and J be two randomly selected indices, 1 </
< J < p, of subpopulations, we find the best and worst solutions for these two subpopulations

x) = arg )I(réigf(x), (17a)

Koy = Arg max f(x). (17b)
for i =1, J. Then, an updating of the selected subpopulations {(called exchange) is carried out by

P (PN {xh}) v {5}, (182)

Py (PA{xG2}) v {0} (18b)

A pseudocode of PSSA is outlined in algorithm 4 in a form useful for an implementation for computers with
parallel architecture of processors.

Algorithm 4. Implementation of parallel simplex simulated annealing (PSSA) method. Procedure PSSA corre-
sponds to the master part of PSSA algorithm. In the framework of this procedure the temperature T is controlled
(from 7,,, to T,,.) for all subpopulations P,, P,, ..., P. A simulated annealing for a fixed temperature T
(i.e., in fact the Metropolis zlgorithm [7]) is performed by the procedure Single_step_SSA independently
for all r subpopulations. This procedure is an inner-cycle part of the procedure SSA presented above in algo-
rithm 3. Procedure Exchange, activated in the procedure PSSA after finishing Metropolis algorithms for all
separate subpopulations, updates two randomly selected subpopulations so that their best solutions eliminate
worst ones. A structure of the procedure PSSA is suggested in such a way that it allows to assign activations of
Single_step_SSa for different subpopulations (determined by index i) to different processors of a parallel
computer.
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procedure Single_step_SSA(counter,P,T,kmx);
begin if counter=1 then
P:=set of g randomly generated points of D;
for k:=1 to ky,x do
begin S:=set of n+l randomly selected
points of P;
x'i=reflection(S):
Pri=min(l,exp (- (£(x')~£(xu))/T));
if random<Pr then x,:=x";
end;
end;

procedure Exchange;

begin I:=l+random(p):
J:=1+random(p);
Pr:= (PI\{X(I)max} )U{X(J)min};
PJ:=(PJ\{X(J)max} )U{X(I)min};

end;

procedure PS3A;
begin counte::=0;
T :=Thnaxs
while T>T,;, do
begin counter:=counter+l;
for i:=1 to r do
3ingle_step SSA(counter;P;, T, Knax) ¢
if random<P.., then Exchange;
T:=a*T;
end;
end;

3. INlustrative calculations

An effectiveness and robustness of the presented simplex simulated annealing methods (SSA and PSSA) are
tested either by numerical examples krown in literature or by our model highly multimodal objective functions.

3.1. Regression analysis

In recent publication of Kfivy and Tvrdik [4] a modified version of CRS has been discussed, its effectiveness
was demonstrated by many examples cf regression analysis [4,14,15] that are known as notoriously difficult. We
have recalculated all these examples by SSA and PSSA, in all cases we have obtained the same numerical val-
ues of parameters and objective functions as those ones listed in [4]. As illustrative example we present a regres-
sion problem which is most time consuming with very slow convergence. The model function is determined by

g(x;B) = BixP + By xh, (19)
where the parameters are restricted by
0<B,<1, 1<B,<8, 1<f,<5 0<B,<1. (20)
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Fig. 5. Schematic outline of parallel simulated annealing method. Whole population P is divided onto subpopulations P, P,, .... Single-step
SSA processes ate running independently for all subpopulations and for the same temperature 7. Arrows between subpopulations denote an
exchange of ‘information’ between them, this is realized so that for randomly selected pair of subpopulations P; and P; the copies of best
solutions are exchanged and their worst ones are eliminated.

The objective function is expressed as a logarithm of sum of squares of differences between required and calcu-
lated values,

N
F(B)=l| T [¢(x. B) =]’ (21)
i=1
where the ‘training-set points’ (x,, y;), i=1,2, ..., N, are listed in Table 1. An application of the logarithm in
the objective function is the well-known numerical trick for simple mapping of a function which is varying in a
range of many orders onto a smaller interval. Numerical results (average CPU time from 20 runs obtained for all
the mentioned methods by using the same compiler and the same PC with 486DX2 processor, clock 66 MHz)
are listed in Table 2. The CRS algorithm did not converge, it finished at the values of objective function f= 1073,
that is about two orders higher than its optimal value. The modified version of CRS, suggested by Kfivy and
Tvrdik [4], already converges though relatively slowly. The results of present versions of simplex simulated an-
nealing for basic parameters

k.. =1000, T, =107 T, =10"°, a=099, p=10xn, r=10, 22
max max min

where p is the number of points in the population and r is the number of subpopulations in the parallel SSA,
are summarized in Table 2. We see that both present simulated annealing methods are more effective than the
randomized version of CRS [4], obtained CPU times are almost five times smaller than for the randomized CRS.
We have to note that similar CPU times are not obtained for all examples studied in [4], but in worst cases the
acceleration was twofold with respect to the modified CRS.

We have tried to solve these regression analysis examples also by pure simulated annealing approaches using
either binary or real representation of variables (with the similar parameters as in Eq. (22)). We have achieved
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Table 1

Training set of regression analysis specified by the model function Eq. (19)

No. x y
1 12 731
2 13 7.55
3 14 7.80
4 15 8.05
5 16 8.31
6 17 8.57
7 18 8.84
8 19 9.12
9 20 9.40

10 2 9.69

11 22 9.99

12 23 10.30

the correct solutions only for a few examples. In general, the method of simulated annealing in the investigated
form was unable to solve correctly all regression analysis examples. The main obstacle for the simulated anneal-
ing is that values of objective functions are varied in ranges of many orders, they are very sensitive to small
perturbations of variables. Consequen:ly, the Metropolis criterion may (may not) accept new perturbed states
that are not (that are) very promising for ‘evolution’ of current states towards correct solutions. Since in the
hybrid of simplex method and simulated annealing a ‘blind” construction of new states is substituted by a more
sophisticated approach based on the construction of reflection points, where a kind of knowledge of promising
directions is used, suggested methods successfully overcome the above mentioned numerical difficulties of pure
simulated annealing approaches.

3.2. Rosenbrock’s function

This function of two independent variables is unimodal and bi-quadratic
g(x1,x,) =100+ (2 —x,)" + (1 -x,)". (23a)

It is a standard test function in optimization and was proposed by Rosenbrock [16]. Its difficulty arises from the
fact that the minimum x.,, = (x;, x,)=(1, 1), g(x,,) =0, is localized in a steepest parabolic valley with a
flat bottom (see Fig. 6), approximately determined by x, = x?. Most optimization methods at the initial stage of
the search quickly locate the valley and reach its bottom. Due to a curved gradient path with relatively steep
walls of the valley, all nongradient optimization algorithms are very slow, the direction of search must be changed
permanently to reach the minimum. In other words, changes of variables are strongly correlated. For people
working with genetic algorithm or simulated annealing, using either binary or real representation of variables,

Table 2
CPU times of regression model calculations

Optimal parameters: f,,, = 2.981X107%, B, = (.000414, B, = 3.80180, B, = 2.06087, 3, = 0.22289

Method Time (s)
CRS [3] —
CRS,, [4] 140
SSA 32

PSSA 37
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Fig. 6. Contour plot of Rosenbrock’s function determined by Egs. (23a) and (23b). It is unimodal function with minimum (global) at x, =
(1,1), where f(xop,) =0.

this function is almost a ‘nightmare’, since changes in these methods are independent and uncorrelated. Simple
generalization of the function for more than two variables is

n-—1
g 2 2
g(xy xy, oy x,) = )y [100' (x12 _xi+1) +(1-x) ] (23b)
i=1
where single variables are bounded by —10 < x; <10, for i =1, 2, ..., n. This function of n continuous vari-
ables is unimodal and has the only one minimum, at x., =(1, 1, ..., 1), g(x,,) = 0. Then the objective func-
tion is determined as a logarithm of n-dimension Rosenbrock’s function
f(xps %0, ooy ) =Ie[g(x), x5, ..y x,)]. (24)

Simple simplex method and CRS versions [3] failed in finding the correct minimum for n > 3. They are termi-
nated at the valley bottom relatively far from the point x,,,, where the L, distance between simplex (or popula-
tion) points x,,, and x,, is smaller than a prescribed precision ¢. On the other hand, the present simulated
annealing methods (SSA and PSSA) surprisingly provide after a few hundreds iterations the correct solution
Xopt = (1,1, ..., 1), for 2 < n < 10. Similarly, as for the above examples of regression analysis tasks, the sug-
gested methods SSA and PSSA are able to overcome the numerical convergence difficulties of simple simulated
annealing methods. This is true due to the fact that entirely random perturbations of variables are substituted by
reflection points that are placad in promising directions for which the objective function given by Eq. (24) with
very high level of probability is decreasing.

3.3. Model highly multimodal function

Let us define the following trigonometric function damped by an exponential term
g(x) = 0.940249612 + %1% - 5in(10x) - cos(8x). (25)

Its plot is displayed in Fig. 7. We see that it is highly muitimodal function with many minima, the first three
lowest minima are

x = —0.7844416, g(x?)=1.75x107'°,

*® = —0.4397995, g(x)=0.072921,

x® = —1.1293051, g(x®) =0.161959.
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Fig. 7. Plot of multimodal function defined by Ej. (25). Right contour plot corresponds to 2-dimensional function determined by Eq. (26).

An n-dimension highly multimodal objective function is determined as follows

n
f(xys x5, ...,xn)=ln(2g(x,.)), (26)
i=1
where single variables are bounded by —10 < x, <10, for i=1, 2, ..., n. This function has the global mini-
mum at x,,, composed of all entries equal to x(), its functional value at the point x,, is fx,,)=n X 1.75 X
107'°, A similar function has been recently successfully used by the author for demonstration of effectiveness
and robustness of the so-called messy simulated annealing [17}. We have tried without success to use the stan-
dard version of simplex method (see algorithm 1) for the correct solution of the optimization task with objective
function given by Eq. (26) for n > 2. Most often the simplex method has achieved only suboptimal points and
moreover with very poor convergence properties. In particular the size of simplex has been quickly reduced and
then it rolled to the closest local solution. Slightly better behaviour is manifested by CRS method [3] and its
randomized version [4]. In particular, for 2 < n < 3, these methods provide with high level of probability (80—
90%) the correct solutions. Unfortunately, this correctness substantially decreases if n > 4, e.g. for n = 4 about
20-30% resulting solutions are correct. An effectiveness of CRS for n > 4 may be partially increased by enlarg-
ing the population dimension p, but then method is plagued by a slower convergence. The present hybrid meth-
ods of simulated annealing successfully overcome convergence difficulties of simple simplex method and CRS.
The following set of basic control parzmeters of simulated annealing has been used

ko,=1000, T, =01, T, =000, =099, p=10Xn, r=10. (27)
The obtained results from 20 runs are summarized in Table 3. We see that PSSA provides for all 2 < n < 6 cor-

rect global minimum, while its simpler version SSA provides correct solutions only for 2 <n <4, for n > 5 its
effectiveness is decreasing.

Table 3

Correctness (in %) of SSA and PSSA for optimization of multimodal function specified by Eq. (26)
n SSA PSSA

2 1009 100%

3 100% 100%

4 100% 100%

S 95% 100%

6 90% 100%
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4. Discussion and summary

The proposed hybrid of simplex method and simulated annealing represents effective and robust stochastic
optimization method, which is able to solve correctly many tasks that are notoriously difficult for standard
(gradient as well as nongradient) optimization methods. As a prototype of our approach Price’s controlled ran-
dom search [3] (see also Ref. 4]) is used. This pioneering work may be now considered as one of forerunners of
modern evolutionary approaches like the genetic algorithms [5], simulated annealing [6], evolution strategy [7],
etc. Moreover, interesting reszmblance between CRS and GA may be outlined. Both methods use the concepts
of population and reproduction. In GA the population is composed of binary vectors whereas in CRS the popula-
tion is composed of points (vectors with real entries). This difference, on the first sight principal, is removed in
current versions of GA [18], there are successfully used chromosomes represented by vectors with real entries.
The process of reproduction in GA is performed by the so-called selection, crossover, and mutation, whereas in
CRS it corresponds to a construction of reflection points from the randomly selected simplex points. Similarly
as in the previous case, current versions of GA with chromosomes represented by real vectors [18], use simple
algebraic operations (e.g., arithmetic mean) over them to create offspring. In the framework of CRS we may
speak about a simplex mating, the pair reproduction (GA) is changed by the (n + 1)-tuple reproduction (reflec-
tion). The above considerations on the resemblance of GA and CRS may turn our attention to a modification of
CRS in a way that common similarities are enforced. In particular, the modifications of CRS should cover the
selection of simplex points from the population and the returning of reflection points to the population. Both
these requirements may be done by a quasirandom manner reflecting the quality of single points (i.e., fitness of
chromosomes in GA).

An effectiveness and robustness of the proposed hybrid methods SSA and PSSA is numerically tested by three
examples that are notoriously difficult for single simplex method and simulated annealing. We have demon-
strated that these methods are sufficiently effective and robust to produce correct solutions. The proposed method
contains a few parameters that should be properly tuned to get its best performance. In particular, the perfor-
mance is fairly sensitive on parameters k., T...c» Tmin» and a, this means that their proper numerical values
must result from some preliminary ‘trial-and-error’ calculations. The parameter &, should be sufficiently large
so that the Metropolis algorithm will produce states (reflection points that are accepted by the Metropolis crite-
rion) from search space with probability distribution closely related to the Boltzmann distribution. In all our ex-
amples we have used &, = 10°. The starting temperature T, is roughly determined [7] so that about 50%
reflection points are accepted by the Metropolis criterion. If 7, ,, is increased to greater values, then almost all
new reflection points are accepted by the Metropolis criterion and none new information is incorporated by the
process of simulated annealing. According to a physical analogy, we may say that the system is melted or even
evaporated, and it is impossible to look for a formation of new structures with lower energy. On the other hand,
if T_,, is very small, then the system is ‘frozen’ to a current state, Metropolis criterion accepts almost entirely
reflection points with values of objective function smaller than that one assigned to the current state. In this re-
gion of smaller temperatures the method of simulated annealing starts becoming to behave like a local search
algorithm (i.e., only better solutions are accepted for further extension of local search). Finally, the parameter o
used for multiplicative decreasing of temperature (i.e., T < a * T) should be selected so that the temperature is
sufficiently slowly decreased avoiding large temperature ‘jumps’, we set this parameters in all our calculations
to a=0.99, i.e., the temperature T is decreased by 1% relative steps. The size p of population P represents
also a very important control parameter of SSA. In general, it should be greater than the simplex dimension n + 1,
i.e., p>n+ 1, where n is the number of independent variables of objective function f. Its setting to great val-
ues increases the diversity of search space (i.e., population) and this increases the chance to get correct solu-
tions, but is accompanied with slower convergence manifested by the fact that a population ‘diameter’ expressed
by 1%, — Xmax| (see Fig. 3) is very slowly vanishing in the course of simulated annealing. In all our calcula-
tions a proper value of the dimension p was set to p = 10 X n, that is the size of population is roughly ten
times greater than the size of simplex. In the framework of PSSA the population P is divided into r subpopula-
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tions of the same size, it means that the size (cardinality) of P is determined by | P| = r X p, where p is the size
of subpopulations. We have used r = 0 and the size p was determined by the above approach p = 10 X n used
in SSA. It means that ten quasi-independent simulated annealings are performed over subpopulations composed
of p =10 X n points, and subpopulations randomly interact so that the best solutions are exchanged with simul-

taneous elimination of the worst ones. The probability of this exchange P, should be very small, we set P,

= 0.001, in the opposite case the subpopulations are quickly equalized (i.e., all subpopulations are composed of
almost the same points) and the simulated annealing is stopped at an incorrect solution. An implementation of
SSA and PSSA is very simple and does not require any special ‘tricks’” and approaches. The algorithmization of
PSSA (see algorithm 4) is done so that it can be performed on computers with parallel architecture of proces-
sors, an activation of the procedure s:ngle_step_SSA may be mapped by compiler for different subpopula-
tions to different processors. This means that the time consuming of PSSA is roughly the same as for SSA, but
with greater effectiveness than a simple SSA.
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